A I g O r|th m S ROBERT SEDGEWICK | KEVIN WAYNE

4.4 SHORTEST PATHS

>~ APls
shortest-paths properties

v

v

Dijkstra's algorithm
edge-weighted DAGs
negative weights

v

v

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to .

edge-weighted digraph

4->5 0.35

5->4 0.35 @\»

4->7 0.37 Y

5->7 0.28 ~ :)

/->5 0.28 /@’

5->1 0.32 -

0->4 0.38 =

0->2 0.26

i->§ 8 , gg shortest path from 0 to 6
_> .

2->7 0.34 SCERIEY:

6->2 0.40 253 0.39

3->6 0.52 356 0.52

6->0 0.58 '

6->4 0.93

Google maps

- (% 3 n N
% e | Map || Satellite || Hybrid
Q- Aeny [% =
P | B ES % ™ 3 >
i © % P <
o ¢ v Medical Center : > A %)
2 ¢ At P i t A A= "4,\""5 A ‘i_.‘n' (o
AN pie nnceton e = Sers 2 RO % Bainbnd®)
kS (s B e - 2 poud®)
o ? A B - 7
‘2 0 e o %‘ u
2 o e Ciay St ¥ oy 1 - oy
< L anor =
~ -~ = 3 AN % A
2 yie = B,
> < 5
W e} =
@ = Princel GOtV 2 i \
of ; yan neeton 2 : 5
NSt m 2 2 o 4 3 N
° e Cemetery AT P R1 WS e B\ B
i \ 5 3% @ AT 5 %
o g CANRL: AR s AP D o
Quar > Z 3\ 5 @ = 3 A 2
x = CRRE ' ©
0 RS % \ o :‘&""""9 6‘ -'-'-,:) ' &
o e e) A s
>, G] = [o
o B parc X % ot
- £ PL - P2 e < W e
wetand L S ROPESon — =N 2 oy
o > pad o % %, ot
=) C{"‘“-\ \4 <3 (:2.
\ = - E
S e 7 A o S %‘V
o 8 \ £ W A - x
£ » 30\ \ w"’ = Q) !_\'.5*
2, TS (= e
\odhae L % O Al1> . ' e ’~L' 2 \0& o
WS S % 9. p @n POoaceéton W 0 e o & s
-~ Y AR NI - vy, v - <
, ("9 L'[‘.\ f” p-,u'-"cl < ‘If.\@‘ S 'e,.,.:n-
2 Y e > - \:\'ﬁ" ¢ < “‘.'“\ T
< ?d " 2, V2 N\%
o > =3
; » . : U
< ¥ = R tad
{3 s ‘?R P @ Q, '3_:,1;‘ '-551; N
P - »
B > ("5.) R R @
g ' %, Y ONASD S
z % ®
A ¢ e @
G B WY % %
e Z % X &
= z z
S e % -
~_5 O (f -~ ,p (; @
<) o >
5 h '% o »o
8 fed 9. 2
& S Z \
¥/, & . _
% > Palmer Stadium-Princeton
‘4-5 A Jniversity Ke Dy
”:’o .
N S Princeton
o X - .
< University-Main Campus
£
& o) e
(¢ 5, <Y
od
%
>
&
o
| 1000 ft | &
f200m |

Soringdale
Golf Clab

@2005 Google - Map data ®2005 NAVTEQ™ -Tern

Shortest path applications

 PERT/CPM.

* Map routing.

e Seam carving.

* Texture mapping.
* Robot navigation.

* Typesetting in TeX.

* Urban traffic planning.

* Optimal pipelining of VLSI chip.

* Telemarketer operator scheduling.

* Routing of telecommunications messages.

* Network routing protocols (OSPF, BGP, RIP).
* EXxploiting arbitrage opportunities in currency exchange.

* Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variants

Which vertices?
e Single source: from one vertex s to every other vertex.
« Single sink: from every vertex to one vertex t.
e Source-sink: from one vertex s to another r.
* All pairs: between all pairs of vertices.

Restrictions on edge weights?

Left: Bird Ave T
Zae sunol-Hidtown

* Nonnegative weights. e

—= iy
—— —

* Euclidean weights.
* Arbitrary weights.

Cycles?

* No directed cycles.
* No "negative cycles." which variant?

Simplifying assumption. Shortest paths from s to each vertex v exist.

4.4 SHORTEST PATHS

> APls

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v—w
int from() vertex v
int to() vertex w
double weight() weight of this edge
String toString() string representation

ldiom for processing an edge e: intv = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge

{
private final int v, w;
private final double weight;

public DirectedEdge(int v, int w, double weight)
{

this.v = v;

this.w = w;

this.weight = weight;
¥

public int from()

{ returnv; } from() and to() replace
either() and other()
public int to() -

{ return w; }

public int weight()
{ return weight; }

Edge-weighted digraph API

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices
void addEdge(DirectedEdge e) add weighted directed edge e
lterable<DirectedEdge> adj(int v) edges pointing from v
int V() number of vertices

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

tinyEWD. txt

\/\ﬁ;S
<« F

15
4 5 0.35
54 0.35
4 7 0.37
57 0.28
/75 0.28
51 0.32
04 0.38
02 0.26
7 3 0.39
13 0.29
27 0.34
6 2 0.40
36 0.52
6 0 0.58
6 4 0.93

N O i W N RO

AN

adj

.26

.38

.29

.34

Bag objects

.52 reference to a
Y DirectedEdge
object
.37 51.35 l
.32 71.28— 41,35
.93 0(.58— 21.40
.39 — 5.28

10

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

public class EdgeWeightedDigraph
{
private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph(int V)

{
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag[V];
for (intv=0;v<V;v++t)

adj[v] = new Bag<DirectedEdge>();

public void addEdge(DirectedEdge e)
{

int v =e.from();
adj[v].add(e); add edge e = v—w to

} only v's adjacency list

public lterable<DirectedEdge> adj(int v)
{ return adj[v]; }
}

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

SP(EdgeWeightedDigraph G, int s)
double distTo(int v)

lterable <DirectedEdge> pathTo(int v)

SP sp = new SP(G, s);
for (intv=0; v <G.V(); v++)
{
StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
for (DirectedEdge e : sp.pathTo(v))
StdOut.print(e +" ");
StdOut.printin();

shortest paths from s in graph G
length of shortest path from s to v

shortest path from s to v

12

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G
double distTo(int v) length of shortest path from s to v
lterable <DirectedEdge> pathTo(int v) shortest path from s to v

% java SP tinyEWD.ixt O

0 to 0 (0.00):

Oto1(1.05): 0->4 0.38 4->50.35 5->10.32

0 to 2 (0.26): 0->2 0.26

010 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39

0to 4 (0.38): 0->4 0.38

0to 5 (0.73): 0->4 0.38 4->50.35

0to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
(0.60):

Oto 7 (0.60): 0->2 0.26 2->7 0.34

4.4 SHORTEST PATHS

> shortest-paths properties

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.
Observation. A shortest-paths tree (SPT) solution exists. Why?
Consequence. Can represent the SPT with two vertex-indexed arrays:

e distTo[v] is length of shortest path from s to v.
e edgeTo[v] is last edge on shortest path from s to v.

edgeTo[] distTo[]

@ 0| ~ null 0
a e 1| 5->1 1.05
2| 0->2 0.26
a a 3| 7-53 0.97
@ 4| 0->4 0.38
5| 4->5 0.73
a 6 6| 3->6 1.49
7l 2-57 0.60

shortest-paths tree from 0 parent-link representation

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.
Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
e distTo[v] is length of shortest path from s to v.
e edgeTo[v] is last edge on shortest path from s to v.

public double distTo(int v)
{ return distTo[v]; }

public Iterable<DirectedEdge> pathTo(int v)

{
Stack<DirectedEdge> path = new Stack<DirectedEdge>();

for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
path.push(e);
return path;

}

16

Edge relaxation

Relax edge e = v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.

* edgeTo[w] is last edge on shortest known path from s to w.

e If e =v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

v—w successfully relaxes

o N O/,G{ 31
2

1.3

are in edgeTo[]

@ T2 4.4
black edges

17

Edge relaxation

Relax edge ¢ = v—=w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.
e If e =v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

private void relax(DirectedEdge e)

{

int v =e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{

distTo[w] = distTo[v] + e.weight();

edgeTo[w] = e;

18

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:
* distTo[s] = 0.
* For each vertex v, distTo[v] Is the length of some path from s to v.
e For each edge e = v—w, distTo[w] < distTo[v] + e.weight().

Pf. =
e Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v—w.
* Then, e gives a path from s to w (through v) of length less than distTo[w].

e
1.3

\

@ 70 <«—— (distTo[w]

19

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

distTo[s] = 0.
For each vertex v, distTo|[v] is the length of some path from s to v.

For each edge e = v—w, distTo[w] < distTo[v] + e.weight().

Pf. <

Suppose that s =vo—vi— v2— ... = vy = w iS a shortest path from s to w.

Then, gistTo[v:] < distTo[vo] + e1.weight()
. . _ ei = ith edge on shortest path
distTo[vz] < distTo[v1] + e2.weight() oW
distTo[v«] < distTo[vk-1] + ex.weight()

Add inequalities; simplify; and substitute distTo[vo] = distTo[s] = O:
distTo[w] = distTo[vk] < e1.weight() + e2.weight() + ... + ex.weight()

weight of shortest path from s to w

Thus, distTo[w] is the weight of shortest pathto w. &

weight of some path from s to w

20

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.
* The entry distTo[v] is always the length of a simple path from s to v.
* Each successful relaxation decreases distTo[v] for some v.
* The entry distTo[v] can decrease at most a finite number of times. =

21

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

22

4.4 SHORTEST PATHS

> Dijkstra's algorithm

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Dijkstra's algorithm demo

* Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

* Add vertex to tree and relax all edges pointing from that vertex.

<

an edge-weighted digraph

15

12

20

>

0—1 5.0
0—4 9.0
0—7 8.0
1—=2 12.0
1—=3 15.0
1—=7 4.0
2—3 3.0
2—6 11.0

4—5 4.0
4—6 20.0
4—7 5.0
5—=2 1.0
5—6 13.0

7—2 7.0

24

Dijkstra's algorithm demo

* Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
* Add vertex to tree and relax all edges pointing from that vertex.

@ @ v distTo[] edgeTol]

0 0.0
1 50 0-1
2 140 5-2
@ 3 170 2-3
4 90 0-4
5 130 4-5
6 250 2-6
7 80 0-7

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

26

Dijkstra's algorithm: correctness proof 1

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph

with nonnegative weights.

Pf.
« Each edge e = v—w is relaxed exactly once (when vertex v is relaxed),

leaving distTo[w] < distTo[v] + e.weight().
* Inequality holds until algorithm terminates because:
— distTo[w] cannot increase <«<—— (istTo[] values are monotone decreasing

— distTo[v] will not change <—— we choose lowest distTo[] value at each step

(and edge weights are nonnegative)

* Thus, upon termination, shortest-paths optimality conditions hold. =

27

Dijkstra's algorithm: Java implementation

public class DijkstraSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP(EdgeWeightedDigraph G, int s)
{

edgeTo = new DirectedEdge[G.V()];

distTo = new double[G.V()];

pq = new IndexMinPQ<Double>(G.V());

for (intv=0;v<G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;

pg.insert(s, 0.0);
while (!pg.isEmpty())
{
int v = pg.delMin();
for (DirectedEdge e : G.adj(v))
relax(e);

relax vertices in order

of distance from s

28

Dijkstra's algorithm: Java implementation

private void relax(DirectedEdge e)
{
int v =e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
if (pg.contains(w)) pg.decreaseKey(w, distTo[w]);

else pg.insert (w, distTo[w]);

—— update PQ

29

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V delete-min, E decrease-key.

unordered array

binary heap logV log V logV ElogV
d-way heap loga V dlogsV loga V E logevV
Fibonacci heap |+ log V' |+ E+Viog V
+ amortized

Bottom line.
* Array implementation optimal for dense graphs.
* Binary heap much faster for sparse graphs.
* 4-way heap worth the trouble in performance-critical situations.
* Fibonacci heap best in theory, but not worth implementing.

30

Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?
* Prim's algorithm is essentially the same algorithm.

* Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.
* Prim: Closest vertex to the tree (via an undirected edge).
* Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

31

4.4 SHORTEST PATHS

Algorithms
> edge-weighted DAGs

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.
Is it easier to find shortest paths than in a general digraph?

J

A. Yes!

33

Acyclic shortest paths demo

* Consider vertices in topological order.

* Relax all edges pointing from that vertex.

<

an edge-weighted DAG

>

0—1 5.0
0—4 9.0
0—7 8.0
1—=2 12.0
1—=3 15.0
1—=7 4.0
2—3 3.0
2—6 11.0
3—6 9.0
4—5 4.0
4—6 20.0
4—7 5.0
5—=2 1.0
5—6 13.0
7—5 6.0

7—2 7.0
34

Acyclic shortest paths demo

* Consider vertices in topological order.
* Relax all edges pointing from that vertex.

O 1 4 7 5 2 3 6

@ @ v distTo[] edgeTol]

0 00
1 50 0-
2 140 52
@ 3 170 2-3
4 90 0-4
5 130 45
6 250 26
7 80 07

shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG
In time proportional to £+ V. \

edge weights

can be negative!

Pf.
 Each edge e = v—w is relaxed exactly once (when vertex v is relaxed),

leaving distTo[w] < distTo[v] + e.weight().
* |Inequality holds until algorithm terminates because:
— distTo[w] cannot increase <«<—— (istTo[] values are monotone decreasing

— distTo[v] will not change <“<— pecause of topological order, no edge pointing to v

will be relaxed after v is relaxed

* Thus, upon termination, shortest-paths optimality conditions hold. =

36

Shortest paths in edge-weighted DAGs

public class AcyclicSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;

public AcyclicSP(EdgeWeightedDigraph G, int s)
{

edgeTo = new DirectedEdge[G.V()];

distTo = new double[G.V()];

for (intv=0; v <G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;

Topological topological = new Topological(G);
for (int v : topological.order())
for (DirectedEdge e : G.adj(v))
relax(e);

topological order

37

Shortest path variants

Q1. How to model both vertex and edge weights?

\a X el \a el
\GES_, \.@ " »&34
/ /

b . b o

Q2. How to model multiple sources and sinks?

38

4.4 SHORTEST PATHS

Algorithms

> negative weights

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.
2 4 -8
Re-weighting. Add a constant to every edge weight doesn’t work.

14 (1)
Adding 8 to each edge weight changes the

10 192 0) shortest path from 0—1—-2—3 to 0—3.

Dijkstra selects vertex 3 immediately after O.

But shortest path from 0 to 3 is 0—1—2—3.

11 (2)

Conclusion. Need a different algorithm.

40

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

digraph
4->5 0.35 < o
5->4 -0.66
17 0.37 G, O
5->7 0.28 | R0 ®
/7->5 0.28 * 0
5->1 0.32 e @
0->4 0.38
0->2 0.26
/7->3 0.39
1->3 0.29 negative cycle (-0.66 + 0.37 + 0.28)
2->7 0.34 5545755
6->2 0.40
3->6 0.52
6->0 0.58 shortest path from 0 to 6
6->4 0.93 0->4->7->5->4->7->5...->1->3->6

Proposition. A SPT exists iff no negative cycles.

N\

assuming all vertices reachable from s

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

for (inti=0;i<G.V(); i++)
for (intv=0;v<G.V(); v++)
for (DirectedEdge e : G.adj(v))
relax(e);

<«—— pass i (relax each edge)

42

Bellman-Ford algorithm demo

Repeat Vtimes: relax all E edges.

<

an edge-weighted digraph

15

20

0—1 5.0

0—7 8.0
1—=2 12.0
1—3 15.0
1—=7 4.0
2—3 3.0

2—6 11.0

4—5 4.0
4—6 20.0
4—7 5.0
5—=2 1.0
5—6 13.0

7—5 6.0
43

Bellman-Ford algorithm demo

Repeat Vtimes: relax all E edges.

&)

)

shortest-paths tree from vertex s

distTo[] edgeTo[]

N O O A WD

0.0
5.0
14.0
17.0
9.0
13.0
25.0
8.0

44

Bellman-Ford algorithm: visualization

passes

13 SPT

N& N

\ S ‘\\

45

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted
digraph with no negative cycles in time proportional to E x V.

Pfidea. After pass i, found shortest path to each vertex v for which the shortest
path from s to v contains i edges (or fewer).

46

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i,
no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

1

be careful to keep at most one copy

of each vertex on queue (why?)

Overall effect.
e The running time is still proportional to £ x V in worst case.
* But much faster than that in practice.

47

Single source shortest-paths implementation: cost summary

algorithm restriction typical case worst case extra space

no directed
topological sort
cycles
Dijkstra no negative
_ _ ElogV ElogV Vv
(binary heap) weights
Bellman-Ford EV EV V
no negative
Bellman-F cycles
ellman-Ford EaV EV v

(queue-based)

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

48

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean

lterable <DirectedEdge>

digraph
4->5
5->4
4->7
5->7
/->5
5->1
0->4
0->2
/7->3
1->3
2->7
6->2
3->6
6->0
6->4

C OO OO OO OO0 OO0O0 O oo

.35
.66
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

is there a negative cycle?

hasNegativeCycle()

negativeCycle() negative cycle reachable from s

negative cycle (-0.66 + 0.37 + 0.28)
5->4->7->5

49

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating
distTo[] and edgeTo[] entries of vertices in the cycle.

edgeTo|v]

Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and
can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

50

Shortest paths summary

Nonnegative weights.
* Arises in many application.
* Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
* Arise in some applications.
* Topological sort algorithm is linear time.
* Edge weights can be negative.

Negative weights and negative cycles.
* Arise in some applications.
* |f no negative cycles, can find shortest paths via Bellman-Ford.

* |f negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

51

