Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

• APIs

- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

<u> </u>		· ·
4->5	0.35	
5->4	0.35	(1)
4->7	0.37	(5)
5->7	0.28	
7->5	0.28	
5->1	0.32	
0->4	0.38	
0->2	0.26	
7->3	0.39	shortest path from 0 to 6
1->3	0.29	· · · · · · · · · · · · · · · · · · ·
2->7	0.34	0->2 0.26
6->2	0.40	2->7 0.34
3->6	0.52	7->3 0.39
6->0	0.58	3->6 0.52
6->4	0.93	

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

- Single source: from one vertex *s* to every other vertex.
- Single sink: from every vertex to one vertex *t*.
- Source-sink: from one vertex *s* to another *t*.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

which variant?

Simplifying assumption. Shortest paths from *s* to each vertex *v* exist.

4.4 SHORTEST PATHS

shortest-paths properties

Dijkstra's algorithm

negative weights

edge-weighted DAGs

• APIs

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

public class DirectedEdge			
	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$	
int	from()	vertex v	
int	to()	vertex w	
double	weight()	weight of this edge	
String	toString()	string representation	

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
 private final int v, w;
 private final double weight;
 public DirectedEdge(int v, int w, double weight)
  {
   this.v = v;
   this.w = w;
   this.weight = weight;
  }
 public int from()
 { return v; }
                                                                                                     from() and to() replace
                                                                                                     either() and other()
 public int to()
 { return w; }
 public int weight()
 { return weight; }
```

Edge-weighted digraph API

public class EdgeWeightedDigraph			
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices	
	EdgeWeightedDigraph(In in)	edge-weighted digraph from input stream	
void	addEdge(DirectedEdge e)	add weighted directed edge e	
Iterable <directededge></directededge>	adj(int v)	edges pointing from v	
int	V()	number of vertices	
int	E()	number of edges	
Iterable <directededge></directededge>	edges()	all edges	
String	toString()	string representation	

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

Goal. Find the shortest path from *s* to every other vertex.

public class SP

	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G
double	distTo(int v)	length of shortest path from s to v
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}</pre>
```

Goal. Find the shortest path from *s* to every other vertex.

public class SP

	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G
double	double distTo(int v)	
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?

% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
0 to 7 (0.60): 0->2 0.26 2->7 0.34

4.4 SHORTEST PATHS

shortest-paths properties

Dijkstra's algorithm

negative weights

edge-weighted DAGs

APIS

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from *s* to *v*.
- edgeTo[v] is last edge on shortest path from *s* to *v*.

	edgeTo[]	distTo[]
0	null	0
1	5->1 0.32	1.05
2	0->2 0.26	0.26
3	7->3 0.37	0.97
4	0->4 0.38	0.38
5	4->5 0.35	0.73
6	3->6 0.52	1.49
7	2->7 0.34	0.60

shortest-paths tree from 0

parent-link representation

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from *s* to *v*.
- edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v)
{ return distTo[v]; }
public lterable<DirectedEdge> pathTo(int v)
{
 Stack<DirectedEdge> path = new Stack<DirectedEdge>();
 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
    path.push(e);
 return path;
```

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

$v \rightarrow w$ successfully relaxes

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Shortest-paths optimality conditions

Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- distTo[s] = 0.
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

Pf. \Rightarrow

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].

Shortest-paths optimality conditions

Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- distTo[s] = 0.
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

Pf. ⇐

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_k = w$ is a shortest path from *s* to *w*.
- Then, distTo[v₁] \leq distTo[v₀] + e₁.weight() distTo[v₂] \leq distTo[v₁] + e₂.weight() $\stackrel{e_i = i^{th} edge on shortest path from s to w}{\dots}$ distTo[v_k] \leq distTo[v_{k-1}] + e_k.weight()
- Add inequalities; simplify; and substitute distTo[v_0] = distTo[s] = 0:

 $distTo[w] = distTo[v_k] \le e_1.weight() + e_2.weight() + ... + e_k.weight()$

weight of shortest path from s to w

• Thus, distTo[w] is the weight of shortest path to *w*. ■

weight of some path from s to w

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s. Pf sketch.

- The entry distTo[v] is always the length of a simple path from s to v.
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- **Ex 3**. Bellman-Ford algorithm (no negative cycles).

4.4 SHORTEST PATHS

shortest-paths properties

Algorithms

Dijkstra's algorithm

negative weights

edge-weighted DAGs

APIS

Robert Sedgewick \mid Kevin Wayne

http://algs4.cs.princeton.edu

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

Dijkstra's algorithm: correctness proof 1

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge e = v→w is relaxed exactly once (when vertex v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] Cannot increase
 distTo[] values are monotone decreasing
 - distTo[v] will not change

- we choose lowest distTo[] value at each step (and edge weights are nonnegative)
- Thus, upon termination, shortest-paths optimality conditions hold.

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
  private DirectedEdge[] edgeTo;
  private double[] distTo;
 private IndexMinPQ<Double> pq;
  public DijkstraSP(EdgeWeightedDigraph G, int s)
   edgeTo = new DirectedEdge[G.V()];
   distTo = new double[G.V()];
   pq = new IndexMinPQ<Double>(G.V());
   for (int v = 0; v < G.V(); v++)
     distTo[v] = Double.POSITIVE_INFINITY;
   distTo[s] = 0.0;
   pq.insert(s, 0.0);
   while (!pq.isEmpty())
   {
                                                                                                 relax vertices in order
      int v = pq.delMin();
                                                                                                   of distance from s
      for (DirectedEdge e : G.adj(v))
        relax(e);
```

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else            pq.insert (w, distTo[w]);
    }
}
```

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	log V	$\log V$	log V	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^{\dagger}$	1 †	$E + V \log V$

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

4.4 SHORTEST PATHS

shortest-paths properties

Algorithms

edge-weighted DAGs

negative weights

Dijkstra's algorithm

APIS

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.Is it easier to find shortest paths than in a general digraph?

A. Yes!

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

an edge-weighted DAG

- 7→5 6.0
- 7→2 7.0

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to E + V.

Pf.

- Each edge e = v→w is relaxed exactly once (when vertex v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] cannot increase
 distTo[] values are monotone decreasing
 - distTo[v] will not change
 because of topological order, no edge pointing to v
 will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.

can be negative!

Shortest paths in edge-weighted DAGs

```
public class AcyclicSP
{
  private DirectedEdge[] edgeTo;
  private double[] distTo;
  public AcyclicSP(EdgeWeightedDigraph G, int s)
   edgeTo = new DirectedEdge[G.V()];
   distTo = new double[G.V()];
   for (int v = 0; v < G.V(); v++)
     distTo[v] = Double.POSITIVE_INFINITY;
   distTo[s] = 0.0;
   Topological topological = new Topological(G);
                                                                                          topological order
   for (int v : topological.order())
     for (DirectedEdge e : G.adj(v))
       relax(e);
  }
```

Shortest path variants

Q1. How to model both vertex and edge weights?

Q2. How to model multiple sources and sinks?

4.4 SHORTEST PATHS

shortest-paths properties

Algorithms

negative weights

Dijkstra's algorithm

edge-weighted DAGs

APIS

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

Adding 8 to each edge weight changes the shortest path from $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ to $0 \rightarrow 3$.

Conclusion. Need a different algorithm.

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

for (int i = 0; i < G.V(); i++) for (int v = 0; v < G.V(); v++) for (DirectedEdge e : G.adj(v)) relax(e); relax(e);

Bellman-Ford algorithm demo

43

Bellman-Ford algorithm demo

Repeat *V* times: relax all *E* edges.

shortest-paths tree from vertex s

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path to each vertex v for which the shortest path from s to v contains i edges (or fewer).

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	$E \log V$	$E \log V$	V
Bellman-Ford	no negative cycles	E V	E V	V
Bellman-Ford (queue-based)		E + V	E V	V

- Remark 1. Directed cycles make the problem harder.
- Remark 2. Negative weights make the problem harder.
- Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean	hasNegativeCycle()	is there a negative cycle?
Iterable <directededge></directededge>	negativeCycle()	negative cycle reachable from s

digraph

4->5	0.35
5->4	-0.66
4->7	0.37
5->7	0.28
7->5	0.28
5->1	0.32
0->4	0.38
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58
6->4	0.93

negative cycle (-0.66 + 0.37 + 0.28) 5->4->7->5

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Shortest paths summary

Nonnegative weights.

- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.

- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.

- Arise in some applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.