Algorithms

4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).

http://en.wikipedia.org/wiki/Seam_carving

- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variants

Which vertices?

- Single source: from one vertex s to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

which variant?

Simplifying assumption. Shortest paths from s to each vertex v exist.

4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
* negative weights

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

Weighted directed edge API

```
public class DirectedEdge
```

DirectedEdge(int v , int w , double weight)
int from()
int to()
double weight()
String toString()
weighted edge $\nu \rightarrow w$
vertex v
vertex w
weight of this edge
string representation

Idiom for processing an edge e: int $\mathrm{v}=\mathrm{e}$. from(), $\mathrm{w}=\mathrm{e} . \mathrm{to}($ ();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight)
{
        this.v = v;
        this.w = W;
        this.weight = weight;
}
    public int from()
    { return v; }
    public int to()
    { return w; }
    public int weight()
    { return weight; }
}
```


Edge-weighted digraph API

public class EdgeWeightedDigraph

	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
	EdgeWeightedDigraph(In in)	edge-weighted digraph from input stream
void	addEdge(DirectedEdge e)	add weighted directed edge e
Iterable<DirectedEdge>	adj(int v)	edges pointing from v
int	$V()$	number of vertices
int	$E()$	number of edges
Iterable<DirectedEdge>	edges()	all edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;
    public EdgeWeightedDigraph(int V)
    {
    this.V = V;
    adj = (Bag<DirectedEdge>[]) new Bag[V];
    for (int v = 0; v < V; v++)
        adj[v] = new Bag<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }
    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

	SP(EdgeWeightedDigraph G, int s)
double	distTo(int v)
Iterable <DirectedEdge>	pathTo(int v)
boolean	hasPathTo(int v)

shortest paths from s in graph G
length of shortest path from s to v
shortest path from s to v
is there a path from sto v ?

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP
SP(EdgeWeightedDigraph G, int s)
shortest paths from s in graph G
double distTo(int v)
length of shortest path from s to v
shortest path from sto v
boolean hasPathTo(int v)
is there a path from sto v ?

```
% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
0 to 7 (0.60): 0-> 0.26 2->7 0.34
```


4.4 Shortest Paths

- APIS
- shortest-paths properties

Algorithms

Robert Sedgewick \| Kevin Wayne

- Dïkstra's algorithm
- edge-weighted DAGs
- negative weights

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

shortest-paths tree from 0

	edgeTo[]	distTo[]
0	nul1	0
1	$5->10.32$	1.05
2	$0->20.26$	0.26
3	$7->30.37$	0.97
4	$0->40.38$	0.38
5	4->5 0.35	0.73
6	$3->60.52$	1.49
7	2->7 0.34	0.60

parent-link representation

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v)
{ return distTo[v]; }
public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```


Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ gives shorter path to w through v, update both distTo[w] and edgeTo[w].
$\mathbf{v} \rightarrow \mathbf{w}$ successfully relaxes

Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ gives shorter path to w through v, update both distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```


Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:

- distTo[s] $=0$.
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$, distTo[w] \leq distTo[$[\mathrm{v}]+$ e.weight().

Pf. \Rightarrow

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e=v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:

- distTo[s] $=0$.
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$, distTo[w] $\leq \operatorname{distTo[v]}+\mathrm{e}$. weight().

Pf. \Leftarrow

- Suppose that $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}=w$ is a shortest path from s to w.
- Then,

$\operatorname{distTo}\left[\mathrm{v}_{1}\right]$	$\leq \operatorname{distTo}\left[\mathrm{v}_{0}\right]$	$+\mathrm{e}_{1} \cdot$ weight()
$\operatorname{distTo}\left[\mathrm{v}_{2}\right]$	$\leq \operatorname{distTo}\left[\mathrm{v}_{1}\right]$	$+\mathrm{e}_{2} \cdot$ weight()
\ldots		
$\operatorname{distTo}\left[\mathrm{v}_{\mathrm{k}}\right]$	$\leq \operatorname{distTo}\left[\mathrm{v}_{\mathrm{k}-1}\right]$	$+\mathrm{e}_{\mathrm{k}} \cdot$.weight()

$e_{i}=i$ th edge on shortest path
from s to w
distTo[vk] $\leq \operatorname{distTo}\left[\mathrm{v}_{\mathrm{k}-1}\right] \quad+\mathrm{e}_{k} \cdot$ weight()

- Add inequalities; simplify; and substitute distTo[vo] $=$ distTo[s] $=0$:

$$
\operatorname{dist} T o[w]=\frac{\operatorname{dist} T o\left[v_{k}\right] \leq \mathrm{e}_{1} . \text { weight }()+\mathrm{e}_{2} . \text { weight }()+\ldots+\mathrm{e}_{\mathrm{k}} . \text { weight }()}{\text { weight of shortest path from s to } w}
$$

- Thus, distTo[w] is the weight of shortest path to w.

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)
Initialize distTo[s] = 0 and distTo[v] $=\infty$ for all other vertices.
Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.
Pf sketch.

- The entry distTo[v] is always the length of a simple path from s to v.
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] $=\infty$ for all other vertices.
Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).
Ex 2. Topological sort algorithm (no directed cycles).
Ex 3. Bellman-Ford algorithm (no negative cycles).

4.4 Shortest Paths

- APls

- shortest-paths properties

Algorithms

Robert Sedgewick I Kevin Wayne

- Dijkstra's algorithm

亡edge-weighted DAGs

- negative weights

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

Dijkstra's algorithm: correctness proof 1

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$ is relaxed exactly once (when vertex v is relaxed), leaving distTo[w] $\leq \operatorname{distTo[v]~+~e.weight().~}$
- Inequality holds until algorithm terminates because:
- distTo[w] cannot increase
$\longleftarrow \quad$ distTo[] values are monotone decreasing
- distTo[v] will not change
$\longleftarrow \quad$ we choose lowest distTo[] value at each step (and edge weights are nonnegative)
- Thus, upon termination, shortest-paths optimality conditions hold.

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;
    public DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty())
    {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```


Dijkstra's algorithm: Java implementation

```
private void relax(DirectedEdge e)
{
        int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else pq.insert (w, distTo[w]);
        }
}
```


Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^{2}
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log _{d} V$	$d \log _{d} V$	$\log _{d} V$	$E \log _{E / V} V$
Fibonacci heap	1^{\dagger}	$\log V^{\dagger}$	$1 \dagger$	$E+V \log V$

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

4.4 Shortest Paths

- APls

- shortest-paths properties

Algorithms

Robert Sedgewick I Kevin Wayne

- Dïjkstra's algorithm
- edge-weighted DAGs
y negative weights

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.

Is it easier to find shortest paths than in a general digraph?

A. Yes!

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

0	1	4	7	5	2	3	6

v	distTo[] edgeTo[]	
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E+V$.
edge weights
can be negative!

Pf.

- Each edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$ is relaxed exactly once (when vertex v is relaxed), leaving distTo[w] \leq distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- distTo[w] cannot increase
- distTo[v] will not change

because of topological order, no edge pointing to v will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.

Shortest paths in edge-weighted DAGs

```
public class AcyclicSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    public AcyclicSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        Topological topological = new Topological(G);
        for (int v : topological.order())
            for (DirectedEdge e : G.adj(v))
                relax(e);
    }
}
```


Shortest path variants

Q1. How to model both vertex and edge weights?

Q2. How to model multiple sources and sinks?

4.4 Shortest Paths

- APls

- shortest-paths properties

Algorithms

Robert Sedgewick 1 Kevin Wayne

- Dïjkstra's algorithm
- edge-weighted D.AGs,
- negative weights

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

Re-weighting. Add a constant to every edge weight doesn't work.

Adding 8 to each edge weight changes the shortest path from $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ to $0 \rightarrow 3$.

Conclusion. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

Bellman-Ford algorithm

Bellman-Ford algorithm
Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:

- Relax each edge.

```
for(int i=0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
        relax(e);
```


Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

$0 \rightarrow 1$	5.0
$0 \rightarrow 4$	9.0
$0 \rightarrow 7$	8.0
$1 \rightarrow 2$	12.0
$1 \rightarrow 3$	15.0
$1 \rightarrow 7$	4.0
$2 \rightarrow 3$	3.0
$2 \rightarrow 6$	11.0
$3 \rightarrow 6$	9.0
$4 \rightarrow 5$	4.0
$4 \rightarrow 6$	20.0
$4 \rightarrow 7$	5.0
$5 \rightarrow 2$	1.0
$5 \rightarrow 6$	13.0
$7 \rightarrow 5$	6.0

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

shortest-paths tree from vertex s

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm
Initialize distTo[s] = 0 and distTo[v] $=\infty$ for all other vertices.
Repeat V times:

- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path to each vertex v for which the shortest path from s to v contains i edges (or fewer).

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i , no need to relax any edge pointing from v in pass $i+1$.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	$E+V$	$E+V$	V
Dijkstra (binary heap)	no negative weights	$E \log V$	$E \log V$	V
Bellman-Ford	E	$E V$	$E V$	
Bellman-Ford (queue-based)	no negative			
cycles	$E+V$	$E V$	V	

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean hasNegativeCycle() is there a negative cycle?
Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in pass V , there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Shortest paths summary

Nonnegative weights.

- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.

- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.

- Arise in some applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

