
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

4.4 SHORTEST PATHS

‣ APIs
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Given an edge-weighted digraph, find the shortest path from s to t.

2

Shortest paths in an edge-weighted digraph

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

Google maps

3

・PERT/CPM.

・Map routing.

・Seam carving.

・Texture mapping.

・Robot navigation.

・Typesetting in TeX.

・Urban traffic planning.

・Optimal pipelining of VLSI chip.

・Telemarketer operator scheduling.

・Routing of telecommunications messages.

・Network routing protocols (OSPF, BGP, RIP).

・Exploiting arbitrage opportunities in currency exchange.

・Optimal truck routing through given traffic congestion pattern.

4

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

・Single source: from one vertex s to every other vertex.

・Single sink: from every vertex to one vertex t.

・Source-sink: from one vertex s to another t.

・All pairs: between all pairs of vertices.
 
Restrictions on edge weights?

・Nonnegative weights.

・Euclidean weights.

・Arbitrary weights.
 
Cycles?

・No directed cycles.

・No "negative cycles."
 
Simplifying assumption. Shortest paths from s to each vertex v exist.

5

which variant?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

7

Weighted directed edge API

Idiom for processing an edge e: int v = e.from(), w = e.to();

v
weight

w

 public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

String toString() string representation

8

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{
 private final int v, w;
 private final double weight;

 public DirectedEdge(int v, int w, double weight) 
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int from()
 { return v; }

 public int to()
 { return w; }

 public int weight()
 { return weight; }
}

from() and to() replace  

either() and other()

9

Edge-weighted digraph API

Conventions. Allow self-loops and parallel edges.

 public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

EdgeWeightedDigraph(In in) edge-weighted digraph from input stream

void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v) edges pointing from v

int V() number of vertices

int E() number of edges

Iterable<DirectedEdge> edges() all edges

String toString() string representation

10

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph representation

adj
0

1

2

3

4

5

6

7

0 2 .26 0 4 .38

Bag objects

reference to a
DirectedEdge

object

8
15
4 5 0.35
5 4 0.35
4 7 0.37
5 7 0.28
7 5 0.28
5 1 0.32
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29

2 7 .34

3 6 .52

4 7 .37 4 5 .35

5 1 .32 5 7 .28 5 4 .35

6 4 .93 6 0 .58 6 2 .40

7 3 .39 7 5 .28

tinyEWD.txt
V

E

11

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

public class EdgeWeightedDigraph
{
 private final int V;
 private final Bag<DirectedEdge>[] adj;

 public EdgeWeightedDigraph(int V)
 {
 this.V = V;
 adj = (Bag<DirectedEdge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<DirectedEdge>();
 }

 public void addEdge(DirectedEdge e)
 {
 int v = e.from();
 adj[v].add(e);
 }

 public Iterable<DirectedEdge> adj(int v)
 { return adj[v]; }
}

add edge e = v→w to

only v's adjacency list

12

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

SP sp = new SP(G, s);

for (int v = 0; v < G.V(); v++)

{

 StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));

 for (DirectedEdge e : sp.pathTo(v))

 StdOut.print(e + " ");

 StdOut.println();

}

 public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?

13

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
0 to 7 (0.60): 0->2 0.26 2->7 0.34

 public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Goal. Find the shortest path from s to every other vertex. 

Observation. A shortest-paths tree (SPT) solution exists. Why?
 
Consequence. Can represent the SPT with two vertex-indexed arrays:

・ distTo[v] is length of shortest path from s to v.

・ edgeTo[v] is last edge on shortest path from s to v.

15

Data structures for single-source shortest paths

shortest-paths tree from 0
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

parent-link representation

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

・ distTo[v] is length of shortest path from s to v.

・ edgeTo[v] is last edge on shortest path from s to v.

16

Data structures for single-source shortest paths

 public double distTo(int v)

 { return distTo[v]; }

 public Iterable<DirectedEdge> pathTo(int v)

 {

 Stack<DirectedEdge> path = new Stack<DirectedEdge>();

 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])

 path.push(e);

 return path;

 }

Relax edge e = v→w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v→w gives shorter path to w through v, 
update both distTo[w] and edgeTo[w].

17

Edge relaxation

black edges

are in edgeTo[]

s

3.1

7.2 4.4

v→w successfully relaxes

1.3

v

w

18

Edge relaxation

Relax edge e = v→w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v→w gives shorter path to w through v, 
update both distTo[w] and edgeTo[w].

 private void relax(DirectedEdge e)

 {

 int v = e.from(), w = e.to();

 if (distTo[w] > distTo[v] + e.weight())

 {

 distTo[w] = distTo[v] + e.weight();

 edgeTo[w] = e;

 }

 }

19

Shortest-paths optimality conditions	

Proposition. Let G be an edge-weighted digraph. 
Then distTo[] are the shortest path distances from s iff:
・ distTo[s] = 0.

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().
 
Pf. ⇒

・Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v→w.

・Then, e gives a path from s to w (through v) of length less than distTo[w].

s

3.1

7.2 distTo[w]

1.3

v

w

distTo[v]

20

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:

・distTo[s] = 0.

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().

Pf. ⇐

・Suppose that s = v0 → v1 → v2 → … → vk = w is a shortest path from s to w.

・Then,  
 
 

・Add inequalities; simplify; and substitute distTo[v0] = distTo[s] = 0: 
 distTo[w] = distTo[vk] ≤ e1.weight() + e2.weight() + … + ek.weight() 

・Thus, distTo[w] is the weight of shortest path to w. !
weight of shortest path from s to w

weight of some path from s to w

distTo[v1] ≤ distTo[v0] + e1.weight()

distTo[v2] ≤ distTo[v1] + e2.weight()

...

distTo[vk] ≤ distTo[vk-1] + ek.weight()

ei = ith edge on shortest path

from s to w

 
 
 
 
 
 
 
 
 
Proposition. Generic algorithm computes SPT (if it exists) from s.
Pf sketch.

・The entry distTo[v] is always the length of a simple path from s to v.

・Each successful relaxation decreases distTo[v] for some v.

・The entry distTo[v] can decrease at most a finite number of times. !

21

Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:  
 - Relax any edge.

Generic algorithm (to compute SPT from s)

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).
Ex 2. Topological sort algorithm (no directed cycles).
Ex 3. Bellman-Ford algorithm (no negative cycles).

22

Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:  
 - Relax any edge.

Generic algorithm (to compute SPT from s)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

・Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

24

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5 4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0
0→4 9.0
0→7 8.0
1→2 12.0
1→3 15.0
1→7 4.0
2→3 3.0
2→6 11.0
3→6 9.0
4→5 4.0
4→6 20.0
4→7 5.0
5→2 1.0
5→6 13.0
7→5 6.0
7→2 7.0

・Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

25

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Dijkstra's algorithm visualization

26

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph
with nonnegative weights.
 
Pf.

・Each edge e = v→w is relaxed exactly once (when vertex v is relaxed), 
leaving distTo[w] ≤ distTo[v] + e.weight().

・Inequality holds until algorithm terminates because:
– distTo[w] cannot increase
– distTo[v] will not change  

・Thus, upon termination, shortest-paths optimality conditions hold. !

Dijkstra's algorithm: correctness proof 1

27

we choose lowest distTo[] value at each step

(and edge weights are nonnegative)

distTo[] values are monotone decreasing

28

Dijkstra's algorithm: Java implementation

public class DijkstraSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;

 public DijkstraSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 pq.insert(s, 0.0);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
 }

relax vertices in order 

of distance from s

29

Dijkstra's algorithm: Java implementation

 private void relax(DirectedEdge e)
 {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert (w, distTo[w]);
 }
 }

update PQ

30

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

 
 
 
 
 
 
 
 
 
Bottom line.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・4-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but not worth implementing.

Dijkstra's algorithm: which priority queue?

† amortized

PQ implementation insert delete-min decrease-key total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE/V V

Fibonacci heap  1 † log V † 1 † E + V log V

Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?

・Prim's algorithm is essentially the same algorithm.

・Both are in a family of algorithms that compute a spanning tree.
 
Main distinction: Rule used to choose next vertex for the tree.

・Prim: Closest vertex to the tree (via an undirected edge).

・Dijkstra: Closest vertex to the source (via a directed path).
 
 
 
 
 
 
 
 
Note: DFS and BFS are also in this family of algorithms.

31

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Q. Suppose that an edge-weighted digraph has no directed cycles.  
Is it easier to find shortest paths than in a general digraph?
 
 
 
 
 
 
 
 
 
 
 
 
 
A. Yes!

33

Acyclic edge-weighted digraphs

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5 4

15

312

20

13

11

9

・Consider vertices in topological order.

・Relax all edges pointing from that vertex.

Acyclic shortest paths demo

34

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5 4

15

312

20

13

11

9

an edge-weighted DAG

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

・Consider vertices in topological order.

・Relax all edges pointing from that vertex.

Acyclic shortest paths demo

35

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

0 1 4 7 5 2 3 6

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG
in time proportional to E + V.
 
 
Pf.

・Each edge e = v→w is relaxed exactly once (when vertex v is relaxed), 
leaving distTo[w] ≤ distTo[v] + e.weight().

・Inequality holds until algorithm terminates because:
– distTo[w] cannot increase
– distTo[v] will not change  

・Thus, upon termination, shortest-paths optimality conditions hold. !

36

Shortest paths in edge-weighted DAGs

because of topological order, no edge pointing to v 

will be relaxed after v is relaxed

distTo[] values are monotone decreasing

edge weights

can be negative!

37

Shortest paths in edge-weighted DAGs

public class AcyclicSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 public AcyclicSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 Topological topological = new Topological(G);
 for (int v : topological.order()) 
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }

topological order

Q1. How to model both vertex and edge weights?
 
 
 
 
 
 
Q2. How to model multiple sources and sinks?

38

Shortest path variants

a

b

x
c

e
dv

a
v

b
v'

c

e
dx

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Dijkstra. Doesn’t work with negative edge weights.
 
 
 
 
 
 
 
Re-weighting. Add a constant to every edge weight doesn’t work.
 
 
 
 
 
 
Conclusion. Need a different algorithm.

40

Shortest paths with negative weights: failed attempts

3

1

2

6

-8

3

Dijkstra selects vertex 3 immediately after 0.
But shortest path from 0 to 3 is 0→1→2→3.

4

0

2

0

3

1

10

14

211

0
Adding 8 to each edge weight changes the
shortest path from 0→1→2→3 to 0→3.12

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.
 
 
 
 
 
 
 
 
 
 
 
 
Proposition. A SPT exists iff no negative cycles.

41

Negative cycles

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

assuming all vertices reachable from s

s

for (int i = 0; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);

42

Bellman-Ford algorithm

pass i (relax each edge)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times: 
 - Relax each edge.

Bellman-Ford algorithm

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

43

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5 4

15

312

20

13

11

9

an edge-weighted digraph

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

44

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

45

Bellman-Ford algorithm: visualization

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes

Proposition. Dynamic programming algorithm computes SPT in any edge-weighted
digraph with no negative cycles in time proportional to E × V.

Pf idea. After pass i, found shortest path to each vertex v for which the shortest
path from s to v contains i edges (or fewer).

46

Bellman-Ford algorithm: analysis

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times: 
 - Relax each edge.

Bellman-Ford algorithm

47

Observation. If distTo[v] does not change during pass i, 
no need to relax any edge pointing from v in pass i+1.
 
 
FIFO implementation. Maintain queue of vertices whose distTo[] changed.
 
 
 
Overall effect.

・The running time is still proportional to E × V in worst case.

・But much faster than that in practice.

Bellman-Ford algorithm: practical improvement

be careful to keep at most one copy
of each vertex on queue (why?)

48

Single source shortest-paths implementation: cost summary

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

algorithm restriction typical case worst case extra space

topological sort
no directed  

cycles
E + V E + V V

Dijkstra
(binary heap)

no negative
weights

E log V E log V V

Bellman-Ford
no negative  

cycles

E V E V V

Bellman-Ford
(queue-based)

E + V E V V

49

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean hasNegativeCycle() is there a negative cycle?

Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

s

50

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating
distTo[] and edgeTo[] entries of vertices in the cycle.
 
 
 
 
 
 
 
 
Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and
can trace back edgeTo[v] entries to find it).
 
In practice. Check for negative cycles more frequently.

edgeTo[v]

s 3

v

2 6

1

4

5

Shortest paths summary

Nonnegative weights.

・Arises in many application.

・Dijkstra's algorithm is nearly linear-time.
 
Acyclic edge-weighted digraphs.

・Arise in some applications.

・Topological sort algorithm is linear time.

・Edge weights can be negative.
 
Negative weights and negative cycles.

・Arise in some applications.

・If no negative cycles, can find shortest paths via Bellman-Ford.

・If negative cycles, can find one via Bellman-Ford.
 
Shortest-paths is a broadly useful problem-solving model.

51

