
INF101: Object-Oriented Programming

Lecture 13: Class Invariance



Welcome to INF101 – Lecture 13! 

• Previously:

– Inheritance part 2

– Pre- and Post-conditions

– Liskov Substitution Principle



Interfaces + Inheritance

http://www.cs.sjsu.edu/~pearce/modules/lectures/oop/basics/interfaces.htm

http://www.cs.sjsu.edu/~pearce/modules/lectures/oop/basics/interfaces.htm


Inheritance in a nutshell

• Subclass inherits from superclass: all fields (state) 
and methods (behavior)

• You can use an object of the sub-class any place 
you expect a super-class object

• When you make a sub-class, its constructor must 
call the super-class constructor using super
keyword

• Only one superclass allowed per class



Inheritance + Interfaces

• Remember: sub-classes get all fields and 

methods (including code) of the super-class that 

they extend

• The sub-class then also implements any 

interfaces that the super-class does



Interfaces, once more

• Implementing classes have to implement all 

interface methods

• Implementing classes also implement all the 

interfaces that an interface extends (inherits from)

• Many classes can implement same interface

• Interfaces don’t specify a constructor, fields, or 

method code

• You cannot make objects from an interface 



Pre-condition

• Something that must be true before you can call a 

method

• Specifies what method arguments are valid

• Breaking the precondition typically results in an 

IllegalArgumentException (or another exception)

• “What I expect from you”



Precondition
• Best to check arguments yourself, and throw an appropriate 

exception if not met

• Preferably right at the beginning of the method 

• Important to document preconditions with JavaDoc



Post-condition

• What the method guarantees if the pre-condition 

is satisfied

• Things that are true after method is complete

• “What I promise to do for you”



Post-conditions

• Can be checked using assert



Pre- and Post-conditions

• More reading: https://docs.oracle.com/cd/E19683-

01/806-7930/assert-13/index.html

https://docs.oracle.com/cd/E19683-01/806-7930/assert-13/index.html


The Liskov Substitution Principle

• Functions that use superclasses must be able to 

use objects of subclasses without knowing it



LSP

• Ability to replace any instance of a superclass with 

an instance of one of its subclasses without 

negative side effects



Today

• Invariance



Questions?



Invariance



Invariance

• Invariant: an expression that is the same every 

time it is calculated

• Class Invariant: something that is always true for 

an object of a certain class



Class Invariant

• an expression that will be true every time a 
method is called or returns a value

• Class invariants indicate if an object is consistent 
or not (has valid field variables)

• Class invariants should be fulfilled as a pre-
condition to all public methods

• All public methods have to maintain class 
invariance



How to check?

• We can make a method that checks class 

invariance

• For instance if our class invariant is that a ball 

radius is always positive: 



How to check?

• Call this method at the beginning and end (before 

return) of every public method to assert class 

invariant: 



Well that’s a bit much

• Calling this method at the beginning of every 

public method to assert class invariant = overkill

• Generally not needed, unless state (fields) are 

directly modifiable by other classes (public)

• Another good reason to keep your fields private ☺

• More: https://docs.oracle.com/cd/E19683-01/806-

7930/assert-13/index.html

https://docs.oracle.com/cd/E19683-01/806-7930/assert-13/index.html


How can we break class 

invariants?

• Invariants check validity of object’s state (data)

• This state may become invalid, for example by:

– Invalid argument passed by method or 

constructor caller (should check in pre-

condition!)

– The implementation is defective (should check 

with assert statement before return)



Ball example again



In practice

• Document what the class invariants are (Javadoc)

• Useful: check class invariants before you return 
from the constructor and public methods to 
discover inconsistent objects as early as possible

• Remember: As long as field variables are private, 
only the class methods can change them (so only 
need to check own public methods to see if class 
invariant holds)



Summary 

• Precondition: A condition that the caller of an 

operation agrees to satisfy

• Postcondition: A condition that the method itself 

promises to achieve

• Invariant: A condition that a class must satisfy anytime 

a client could invoke an object's method, or a condition 

that should always be true for a specified segment or 

at a specified point of a program



Questions?



Break



Exercise
• Identify superclass and subclass for these pairs:

– a. Employee, Manager

– b. GraduateStudent, Student

– c. Person, Student

– d. Employee, Professor

– e. BankAccount, CheckingAccount

– f. Vehicle, Car

– g. Vehicle, Minivan

– h. Car, Minivan

– i. Truck, Vehicle



Exercise
• Identify superclass and subclass for these pairs:

– a. Employee, Manager

– b. GraduateStudent, Student

– c. Person, Student

– d. Employee, Professor

– e. BankAccount, CheckingAccount

– f. Vehicle, Car

– g. Vehicle, Minivan

– h. Car, Minivan

– i. Truck, Vehicle



Another example: a stack of ints

• We can push things onto the stack

• We can pop things off of the stack

(example from 

http://www.oracle.com/us/technologies/java/assertio

ns-139853.html) 

http://www.oracle.com/us/technologies/java/assertions-139853.html


Pop

• If we want to get an item from the stack, it should 
not be empty (precondition)

• Actually throwing an exception would be more 
helpful since assert can be disabled!



Push

• If we want to push onto the stack, it should not be 

full (precondition), but also, the new index is the 

old index + 1, and the new element should be 

added (postconditions)



Class Invariant

• For the stack, the number of elements in the stack 

should be greater than or equal to zero, and the 

number of elements should not be greater than 

the maximum capacity

• Assert before every public method and 

constructor return



Back to Liskov 

substitution principle



Substitutability

• If S is a subtype of T, objects of type T may be 

replaced/substituted with objects of type S and it 

will work just as well

• For both inheritance and interfaces



In practice

• Pre-conditions in the subclass can not be stronger 

than pre-conditions in the superclass (but can be 

weaker)

• Behavior: subclass has to do at least what the 

superclass does, so able to pass all the tests for 

the superclass



The Liskov Substitution Principle

• Functions that use superclasses must be able to 

use objects of subclasses without knowing it



LSP

• Ability to replace any instance of a superclass with 

an instance of one of its subclasses without 

negative side effects



How does this relate to class 

invariant?

• All methods (including constructor) in the subclass 

have to maintain the class invariant of the 

superclass

• If the subclass has an own class invariant which is 

stronger than the superclass, all methods 

(including inherited!) must uphold this. If the 

inherited do not: have to @override



Example

• Class Bunny inherits from Animal, and has an 

extra field: teethlength

• If teethlength >= 0, then Bunny class invariant = 

Animal class invariant + teethlength >= 0

• All methods in Animal don’t know about 

teethlength, so are safe



Example continued

• But if we have a special relation 

between teeth and weight (from 

Animal), we have to override all 

methods to maintain this:

– The eat() method in Animal can 

change the weight without 

adjusting the Bunny teethlength



Exercise

In an object-oriented traffic simulation system, we 
have the classes listed below.

Draw an inheritance diagram that shows the 
relationships between these classes.

• Vehicle

• Car

• Truck

• Sedan

• Coupe

• PickupTruck

• SportUtilityVehicle

• Minivan

• Bicycle

• Motorcycle





Questions?



Wednesday:

Kodekveld!

• 6 PM

• Vilvite Koferansrom

A/B (C/D maybe)



What can you do?

• Work on the labs linked from our wiki (6 labs and 

semester assignment are up!)

• Summary on inheritance/pre-conditions/Liskov: 

https://retting.ii.uib.no/inf101/inf101.v19/wikis/arv-forkrav-

invariant-substitusjonsprinsippet

• Big Java – Late Objects: Chapter 8: https://ebookcentral-

proquest-com.pva.uib.no/lib/bergen-

ebooks/reader.action?docID=2055777&query=big+java+la

te+objects

https://retting.ii.uib.no/inf101/inf101.v19/wikis/arv-forkrav-invariant-substitusjonsprinsippet
https://ebookcentral-proquest-com.pva.uib.no/lib/bergen-ebooks/reader.action?docID=2055777&query=big+java+late+objects


Big Java – Late Objects: Lots of 

nice examples!



Big Java – Late Objects: Lots of 

nice examples!



What’s next?

• Wednesday: Kodekveld

• Next week: no lectures to give you time to 

complete the compulsory assignment ☺

• Come to the group sessions for help with the 

practical parts of the course



Thanks!


