690

INF101: Object-Oriented Programming

Lecture 13: Class Invariance

UNIVERSITY OF BERGEN [@ ©

90
Welcome to INF101 - Lecture 13!

* Previously:
— Inheritance part 2
— Pre- and Post-conditions
— Liskov Substitution Principle

90
Interfaces + Inheritance

<<interface>>
Player

=l +play()
+stop()

+pause()
+reverse()

A b

Studio uses

s . <<interface>>
DVDPlayer CDPlayer Recorder

+record()

b

. o TapePl
http://www.cs.sjsu.edu/~pearce/modules/lectures/oop/basics/interfaces.htm i e

http://www.cs.sjsu.edu/~pearce/modules/lectures/oop/basics/interfaces.htm

‘90
Inheritance In a nutshell

« Subclass inherits from superclass: all fields (state)
and methods (behavior)

* You can use an object of the sub-class any place
you expect a super-class object

 When you make a sub-class, its constructor must
call the super-class constructor using super
keyword

* Only one superclass allowed per class

‘90
Inheritance + Interfaces

« Remember: sub-classes get all fields and
methods (including code) of the super-class that

they extend

* The sub-class then also implements any
Interfaces that the super-class does

‘90
Interfaces, once more

* Implementing classes have to implement all
Interface methods

* Implementing classes also implement all the
Interfaces that an interface extends (inherits from)

« Many classes can implement same interface

 Interfaces don't specify a constructor, fields, or
method code

* You cannot make objects from an interface

690

Pre-condition

Something that must be true before you can call a
method

Specifies what method arguments are valid

Breaking the precondition typically results in an
lllegalArgumentException (or another exception)

“What | expect from you”

Precondition

« Best to check arguments yourself, and throw an appropriate
exception if not met

» Preferably right at the beginning of the method
Important to document preconditions with JavaDoc

(radius) {

(radius <= 9) {
IllegalArgumentException(

.radius = radius;

‘90
Post-condition

« What the method guarantees if the pre-condition
IS satisfied

« Things that are true after method is complete
« “What | promise to do for you”

Post-conditions

« Can be checked using assert

(radius) {
(radius <= 09) {
IllegalArgumentException(“Radius cannot b egative!");

.radius = radius;
.radius == radius;

‘90
Pre- and Post-conditions

* More reading: https://docs.oracle.com/cd/E19683-
01/806-7930/assert-13/index.html

https://docs.oracle.com/cd/E19683-01/806-7930/assert-13/index.html

3 4

he Liskov Substitution Principle

« Functions that use superclasses must be able to
use objects of subclasses without knowing it

BaseBall();

(b) b.move(b);

b.move(bb);

.out.println(

‘o0
LSP

 Abillity to replace any instance of a superclass with
an instance of one of its subclasses without
negative side effects

‘90
Today

e |nvariance

Questions?

Invariance

‘90
Invariance

 Invariant: an expression that is the same every
time it is calculated

« Class Invariant: something that is always true for
an object of a certain class

690

Class Invariant

an expression that will be true every time a
method is called or returns a value

Class invariants indicate Iif an object is consistent
or not (has valid field variables)

Class invariants should be fulfilled as a pre-
condition to all public methods

All public methods have to maintain class
Invariance

How to check?

« We can make a method that checks class
Invariance

 For instance If our class invariant is that a ball
radius is always positive:

How to check?

« Call this method at the beginning and end (before
return) of every public method to assert class

Invariant:

(radius) {
(radius <= 9) {
IllegalArgumentException(

.checkRadius();

.radius = radius;
.radius == radius;
.checkRadius();

690

Well that’s a bit much

Calling this method at the beginning of every
public method to assert class invariant = overkill

Generally not needed, unless state (fields) are
directly modifiable by other classes (public)

Another good reason to keep your fields private ©

More: https://docs.oracle.com/cd/E19683-01/806-
7930/assert-13/index.html

https://docs.oracle.com/cd/E19683-01/806-7930/assert-13/index.html

How can we break class ‘90
Invariants?

 Invariants check validity of object’s state (data)
« This state may become invalid, for example by:

— Invalid argument passed by method or
constructor caller (should check in pre-
condition!)

— The implementation is defective (should check
with assert statement before return)

‘o0
Ball example again

690

In practice

 Document what the class invariants are (Javadoc)

« Useful: check class invariants before you return
from the constructor and public methods to
discover inconsistent objects as early as possible

« Remember: As long as field variables are private,
only the class methods can change them (so only
need to check own public methods to see If class
Invariant holds)

690

Summary

Precondition: A condition that the caller of an
operation agrees to satisfy

Postcondition: A condition that the method itself
promises to achieve

Invariant: A condition that a class must satisfy anytime
a client could invoke an object's method, or a condition
that should always be true for a specified segment or
at a specified point of a program

Questions?

‘90
Exercise

 |dentify superclass and subclass for these pairs:
— a. Employee, Manager
— b. GraduateStudent, Student
— ¢. Person, Student
— d. Employee, Professor
— e. BankAccount, CheckingAccount
— f. Vehicle, Car
— @. Vehicle, Minivan
— h. Car, Minivan
— 1. Truck, Vehicle

‘90
Exercise

 Identify superclass and subclass for these palrs ‘{[’
— a. Employee,{\t Manager 9)
- b. GraduateStudent,G Student & L_D\
— c. Person, &} Student &

— d. Employee,~ Professor B
_ e. BankAccount,® CheckingAccount® 5 w

— f. Vehicle,t Carr l_ f

— g. Vehicle,’r Minivan &
— h. Car, & Minivan 8
—i.Truck, @ Vehicle P~

‘o0
Another example: a stack of ints

« We can push things onto the stack

« \We can pop things off of the stack

(example from
http://www.oracle.com/us/technologies/java/assertio

ns-139853.html) S o

P~

http://www.oracle.com/us/technologies/java/assertions-139853.html

Pop

 If we want to get an item from the stack, it should
not be empty (precondition)

() {

lisEmpty() :
stack[--num];

« Actually throwing an exception would be more
helpful since assert can be disabled!

Push

 If we want to push onto the stack, it should not be
full (precondition), but also, the new index is the
old index + 1, and the new element should be

added (postconditions)

(element) {

num<capacity :
oldNum = num;
stack[num] = element;

num == oldNum+1 && stack[num-1] == element :

Class Invariant

* For the stack, the number of elements in the stack
should be greater than or equal to zero, and the
number of elements should not be greater than

the maximum capacity

() {

(num >= 0 && num < capacity);

« Assert before every public method and .,1
constructor return

Back to Liskov
substitution principle

690

Substitutability

« If Sis a subtype of T, objects of type T may be
replaced/substituted with objects of type S and it
will work just as well

 For both inheritance and interfaces

‘o0
In practice

* Pre-conditions in the subclass can not be stronger
than pre-conditions in the superclass (but can be

weaker)

* Behavior: subclass has to do at least what the
superclass does, so able to pass all the tests for
the superclass

3 4

he Liskov Substitution Principle

« Functions that use superclasses must be able to
use objects of subclasses without knowing it

BaseBall();

(b) b.move(b);

b.move(bb);

.out.println(

‘o0
LSP

 Abillity to replace any instance of a superclass with
an instance of one of its subclasses without
negative side effects

How does this relate to class ‘90
Invariant?

« All methods (including constructor) in the subclass
have to maintain the class invariant of the
superclass

* |f the subclass has an own class invariant which is
stronger than the superclass, all methods
(including inherited!) must uphold this. If the
Inherited do not: have to @override

‘90
Example

« Class Bunny inherits from Animal, and has an
extra field: teethlength

 If teethlength >= 0, then Bunny class invariant =
Animal class invariant + teethlength >=0

 All methods in Animal don’t know about
teethlength, so are safe

‘'v0
Example continued

« But if we have a special relation
. When someone says "haven't you
between teeth and weight (from B ——
Animal), we have to override all
methods to maintain this:

— The eat() method in Animal can
change the weight without
adjusting the Bunny teethlength

Exercise

In an object-oriented traffic simulation system, we
have the classes listed below.

Draw an inheritance diagram that shows the
relationships between these classes.

* Vehicle PickupTruck

« Car « SportUtilityVehicle
e Truck * Minivan

e Sedan C BicyC|e

. Coupe Motorcycle

690

Figure 1 An Inheritance Hierarchy of Vehicle Classes

Questions?

Wednesday:
Kodekveld!

* 6 PM

* Vilvite Koferansrom
A/B (C/D maybe)

Hei!

Vii INF101-teamet arrangerer en kodekveld for a fa en skikkelig boost i
arbeidet med obligen. Det blir som en megagruppetime der dere kan stille
sparsmal og fa hjelp. Husk at det er veldig lurt & begynne tidlig med obligen
denne oppgaven kan ikke gjgres pa en kveld! ;)

Arrangementet blir holdt pa samme sted som forrige kodekveld, i.e.
konferanserommene i tredje etasje pa Vilvite.

Haper a se mange der,
Hilsen INF101-teamet

-

1] YHANI < I nh |H[||\|$‘

MAR Kodekveld - Semesteroppgave 1

1 3 Event for INF101v19 - Hosted by Rikke Aas and 3 others - 4

co-hosts pending [?]

v/ Going ? Maybe X Can't Go

® Wednesday at 6 PM
2 days from now - -1-2°C Mostly Cloudy

VilVite
Thormghlensgate 51, 5006 Bergen, Hordaland

¥ Invite

Show Map

‘90
What can you do?

« Work on the labs linked from our wiki (6 labs and
semester assignment are up!)

« Summary on inheritance/pre-conditions/Liskov:
https://retting.ii.uib.no/inf101/inf101.v19/wikis/arv-forkrav-
Invariant-substitusjonsprinsippet

« Big Java — Late Objects: Chapter 8: htips://ebookcentral-
proguest-com.pva.uib.no/lib/bergen-
ebooks/reader.action?docID=2055777&query= b|q+|ava+la
te+objects Cl

https://retting.ii.uib.no/inf101/inf101.v19/wikis/arv-forkrav-invariant-substitusjonsprinsippet
https://ebookcentral-proquest-com.pva.uib.no/lib/bergen-ebooks/reader.action?docID=2055777&query=big+java+late+objects

Big Java — Late Objects: Lots of swe
nice examples!

Syntax 9.2 Constructor with Superclass Initializer

Syntax ;{)ubh'c ClassName(parameterType parameterName, . . .)
super(arguments) ;
) 5 i
The superclass public ChoiceQuestion(String questionText)
construetor {
is called first. super(questionText); If you omit the superelass
choices = new Arraylist<String>; construetor call, the superclass
The construetor /} construetor with no arguments
body can contain is invoked.
additional statements.

Big Java — Late Objects: Lots of swe
nice examples!

o020 oo | Don’tUse Type Tests

Some programmers use specific type tests in order to implement behavior that varies with each
class:

if (q instanceof ChoiceQuestion) // Don’t do this
// Do the task the ChoiceQuestion way

else if (q instanceof Question)
// Do the task the Question way

}

This is a poor strategy. If a new class such as NumericQuestion is added, then you need to revise
all parts of your program that make a type test, adding another case:

else if (q instanceof NumericQuestion)

// Do the task the NumericQuestion way

}

In contrast, consider the addition of a class NumericQuestion to our quiz program. Nothing
needs to change in that program because it uses polymorphism, not type tests.

Whenever you find yourself trying to use type tests in a hierarchy of classes, reconsider
and use polymorphism instead. Declare a method doTheTask in the superclass, override it in the
subclasses, and call

q.doTheTask();

‘90
What’s next?

 Wednesday: Kodekveld

* Next week: no lectures to give you time to
complete the compulsory assignment ©

« Come to the group sessions for help with the
practical parts of the course

