
INF100 – 11

moduler, 

standardbibliotek

Crystal Chang Din

David Grellscheid

import og modules
helpers.py

def spam(x):
s = 'spam'

 return f'{s}, {s}, {s}, {x} and {s}.'

N_A = 6.02214e+23

work1.py

import helpers

a = helpers.N_A
b = helpers.spam('eggs’)

work2.py

import helpers as h

a = h.N_A
b = h.spam('eggs’)

work4.py

from helpers import N_A as L, spam as foo

a = L
b = foo('eggs’)

work3.py

from helpers import N_A, spam

a = N_A
b = spam('eggs’)

Packages
Vi kan organisere moduler i mapper med bruk av en
tom __init__.py fil:

sound/ Top-level package
 __init__.py Initialize the sound package
 formats/ Subpackage for file format conversions
 __init__.py
 wavread.py
 wavwrite.py
 aiffread.py
 aiffwrite.py
 auread.py
 auwrite.py
 ...
 effects/ Subpackage for sound effects
 __init__.py
 echo.py
 surround.py
 reverse.py
 ...
 filters/ Subpackage for filters
 __init__.py
 equalizer.py
 vocoder.py
 karaoke.py
 ...

import sound.effects as se

from sound.effects import echo

from sound.effects.echo import echofilter

import og modules
helpers.py

def spam(x):
s = 'spam'

 return f'{s}, {s}, {s}, {x} and {s}.'

N_A = 6.02214e+23

import helpers
import math

a = helpers.N_A
b = helpers.spam('eggs’)
c = 27
d = math.sin(math.pi)
e = a + c + d

(lokalt) helpers math
a N_A sin()
b spam() pi
c cos()
d sqrt()
e …

…
…

<- namespace

from helpers import N_A
from math import sin,pi

a = N_A
c = 27
d = sin(pi)
e = a + c + d

(lokalt)
N_A
sin
pi
a
c
d
e

ikke 
tilgjengelig

_ _name_ _
def show_name():
 return __name__ # *to* understrek hver side!

print('Navnet er’,show_name())

Navnet er __main__

_ _name_ _
helpers.py

def show_name():
 return __name__ # *to* understrek hver side!

Navnet er helpers

import helpers

print('Navnet er', helpers.show_name())

Navnet er helpers

import helpers as abc

print('Navnet er', abc.show_name())

_ _name_ _
something.py

def abc():
 return 77

def klm(x):
 return x+x

def xyz():
 return 'Hei'

if __name__ == "__main__": # filen er brukt direkte
 # gjør noe
 print(abc())
 print(klm(12))
 # gjør noe annet
 # …

Om filen brukes som bibliotek med import, så kjører siste delen ikke.

_ _name_ _
def main():
 # …
 f3()
 # …
 f1()
 # …

def f1():
 return …

def f2():
 return …

def f3():
 return …

if __name__ == "__main__":
 main()

Kan skrive hovedprogram først i filen, før vi definerer andre funksjoner

dir() og pydoc
helpers.py
"""
A module full of helpers. It’s really useful!
"""
def show_name():
 """Show the module’s name.""" # <- docstring
 return __name__ # *to* understrek hver side!

[…,…,’show_name’]

import helpers
print(dir(helpers))

Help on module helpers:

NAME

 helpers - A module full of helpers. It’s really useful!

FUNCTIONS

 show_name()

 Show the module’s name.

FILE

 /Users/dg/INF100/exercises/l10/helpers.py

(END)

import helpers
help(helpers)

tast 'q' for å quitte

$ pydoc helpers

liste av alle funksjoner,
variabler, osv., som finnes i

modulen

https://www.python.org/dev/peps/pep-0257/

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Standard Library
Stor utvalg:

Regular expressions, difflib, textwrap

datetime, calendar

synchronized queue

copy

math, decimal, fractions, random

os.path, stat, tempfile, shutil

pickle, sqlite3, zlib, bz2, tarfile, csv

Markup, internet protocols, multimedia, debugging, ...

https://docs.python.org/3/library

https://docs.python.org/3/library
https://docs.python.org/3/library

math

• floor, ceil

• exp, log, log2, log10

• pow, sqrt

• sin, cos, tan

• pi, e

import math

fractions
from fractions import Fraction
Fraction(16, -10)
Fraction(123)
Fraction()
Fraction('3/7')
Fraction(' -3/7 ')
Fraction('1.414213 \t\n')
Fraction('-.125')
Fraction('7e-6')
Fraction(2.25)
Fraction(1.1)

x = Fraction(3,4) + Fraction(1,6)
x
x.numerator
x.denominator

from math import pi
Fraction(pi)
Fraction(pi).limit_denominator(100)
Fraction(pi).limit_denominator(50)

datetime
from datetime import date
today = date.today()
my_birthday = date(today.year, 6, 24)

if my_birthday < today:
 my_birthday = my_birthday.replace(year=today.year + 1)

time_to_birthday = abs(my_birthday - today)
print(time_to_birthday)

from datetime import datetime
now = datetime.now()
exam = datetime(2020, 5, 28, 9, 0, 0)
print(exam - now)

calendar
import calendar
calendar.prmonth(2020,2)

itertools
import itertools

import random
random.seed(123456) # reproduserbare resultater

random.randint(1,6) # 1 <= N <= 6

random.choice('abcdef')
random.choice([11, 7.2, 'foo'])
random.choices('abcdefghi', k=100)

random.sample('abcdefghi', k=3)

random

random.random() # [0.0, 1.0)
random.uniform(12.0, 20.0) # 12.0 <= N <= 20.0

random.gauss(mu=40.0,sigma=12.0)

