INF100 - 11
moduler,
standardbibliotek

Crystal Chang Din
David Grellscheid

Import og modules

helpers.py
def spam(x):
S = 'spam’
return f{s}, {s}, {s}, {x} and {s}.

N_A=6.02214e+23

work1.py

import helpers # work2.py

a = helpers.N_A import helpers as h
b = helpers.spam('eggs’)

a=h.N_A
b = h.spam('eggs’)

work3.py

work4.py
from helpers import N_A, spam
from helpers import N_A as L, spam as foo
a=N_A

b = spam('eggs’) L

a
b = foo('eggs’)

Packages

Vi kan organisere moduler | mapper med bruk av en
tom __init__.py fil:

sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py

aiffwrite.py

auread.py import sound.effects as se
auwrite.py

effects/ Subpackage for soun| from sound.effects import echo
__init__.py
echo.py

surround.py from sound.effects.echo import echofilter
reverse.py

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py

Import og modules

helpers.py

def spam(x):
s = 'spam’
return f{s}, {s}, {s}, {x} and {s}.

N_A=6.02214e+23

import math a N_A sin()
b spam() pi
a = helpers.N_A C cos()
b = helpers.spam('eggs’) d sqrt()
c=27 e
d = math.sin(math.pi)
e=a+c+d
_ (lokalt)
Irom helfhe.rs |mptorjc N_.A N A
rom math import sin,pi . i
Ll ikke
a=N_A > tilgjengelig
c =27 a
d = sin(pi) c
e=a+c+d d
e

<- namespace

narne

def show_name():
return __ _name__ # *to* understrek hver side!

print('Navnet er’,show_name())

Navnet er main__

narne

helpers.py

def show_name():
return _ _name__ # *to* understrek hver side!

import helpers

print('Navnet er', helpers.show_name())

Navnet er helpers

import helpers as abc

print('Navnet er', abc.show_name())

Navnet er helpers

narne

something.py

def abc():
return 77

def kKim(x):
return x+x

def xyz():
return 'Hei'

if __name__=="__main__": # filen er brukt direkte
gjor noe
print(abc())
print(kim(12))
gjor noe annet
#...

Om filen brukes som bibliotek med import, sa kjorer siste delen ikke.

narne

def main():
#...
£3()
...

f1()
...

def f1():
return ...

def f2():
return ...

def 13():
return ...

if name_ ==" main__":
main()

Kan skrive hovedprogram farst i filen, far vi definerer andre funksjoner

dir() og pydoc

helpers.py

A module full of helpers. It’s really useful!

def show_name():
""Show the module’s name."" # <- docstring
return __name__ # *to* understrek hver side!

import helpers import helpers
print(dir(helpers)) help(helpers)

$ pydoc helpers

Help on module helpers:

NAME
helpers — A module full of helpers. It’'’s really useful!

[...,...,’'show_nhame’]

liste av alle funksjoner,

. . . FUNCTIONS
variabler, osv., som finnes |

show_name()
modulen Show the module’s name.

FILE
/Users/dg/INF100/exercises/110/helpers.py

(END)

https://www.python.org/dev/peps/pep-0257/ tast 'q' for a quitte

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Standard Library

Stor utvalg:

e T x * * FK K F*

Regular expressions, difflib, textwrap
datetime, calendar

synchronized queue

copy

math, decimal, fractions, random

os.path, stat, tempfile, shutil

pickle, sqlite3, zlib, bz2, tarfile, csv

Markup, internet protocols, multimedia, debugging, ...

https://docs.python.org/3/library

https://docs.python.org/3/library
https://docs.python.org/3/library

math

import math

floor, cell

exp, log, log2, log10
pow, sgrt

sin, cos, tan

pI, €

fractions

from fractions import Fraction
Fraction(1l6, -10)
Fraction(123)

= Fraction(3,4) + Fraction(1l,6
Fraction(2.25) (3,4) (1,6)

Fraction(1l.1)

(
Fraction()
Fraction('3/7")
Fraction(' -3/7 ")
Fraction('1.414213 \t\n')
Fraction('-.125")
Fraction('7e-6")

(

(

.numerator
.denominator

XXX\ X

from math import pi

Fraction(pi)

Fraction(pi).limit denominator(100)
Fraction(pi).limit denominator(50)

datetime

from datetime import date

today = date.today/()
my birthday = date(today.year, 6, 24)

if my birthday < today:
my birthday = my birthday.replace(year=today.year + 1)

time to birthday = abs(my birthday - today)
print(time to birthday)

from datetime import datetime

now = datetime.now()
exam = datetime (2020, 5, 28, 9, 0, 0)
print(exam - now)

calendar

import calendar
calendar.prmonth (2020, 2)

itertools

import itertools

Iterator Arguments Results
. d, ... cartesian product, equivalent to a
product () P 4 P 9
[repeat=1] nested for-loop
r-length I | ible orderings,
permutations () ol 1] ength tuples, all possible orderings

no repeated elements

r-length tuples, in sorted order, no

combinations () p, r
repeated elements

r-length tuples, in sorted order, with

combinations with replacement() p, r
repeated elements

AA AB AC AD BA BB BC BD CA CB CC

product('ABCD', repeat=2)
CD DA DB DC DD

AB AC AD BA BC BD CA CB CD DA DB

permutations('ABCD', 2)
DC
combinations('ABCD', 2) AB AC AD BC BD CD

combinations with replacement('ABCD',
2)

AA AB AC AD BB BC BD CC CD DD

random

random.seed(123456) # reproduserbare resultater
random.randint(1,6) # 1 <= N <= 6

random.choice('abcdef ')

random.choice([1l1], 7.2, 'foo'])

random.choices('abcdefghi’, k=100)

random.sample('abcdefghi', k=3)

random.random() # [0.0, 1.0)
random.uniform(12.0, 20.0) # 12.0 <= N <= 20.0

random.gauss (mu=40.0,sigma=12.0)

